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Abstract: Kalman filtering is a method for estimating  state variables of a dynamic systems 

recursively from noise-contaminated measurements. For systems with nonlinear dynamics, a 

natural extension of the Linear Kalman Filter (LKF), called Extended Kalman filter (EKF) is 

used. The Kalman filter represents one of the most popular estimation techniques for integrating 

signals from navigation systems, like Inertial Navigation System (INS) and Global Positioning 

System (GPS). However, a significant difficulty in designing a Kalman Filter (refers to both 

LKF and EKF) can often be traced to incomplete a priori information about R  and Q matrices. 

It has been shown that incorrect a priori information can lead to practical divergence of the 

filter. The use of  fuzzy-rule based adaptation scheme to cope with divergence problem is 

explored. The Fuzzy Logic Adaptive Controller (FLAC) was implemented in Integrated 

INS/GPS Navigation Systems to detect the uncertainties, adapt the Kalman Filter on-line and 

prevent divergence. 
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1. INTRODUCTION 

 

Kalman filtering is a method for estimating  state variables of a dynamic systems recursively 

from noise-contaminated measurements. The filter determines the system’s present state by 

optimally combining theoretical estimates with measurements noise characteristics based on 

the knowledge  of the system model. This is the well known Linear Kalman filter (LKF) for 

state estimation of linear systems. For systems with nonlinear dynamics, a natural extension 

of the LKF called Extended Kalman filter (EKF) is used.  

The Kalman filter represents one of the most popular estimation techniques for integrating 

signals from short-term high performance navigation systems (like Inertial Navigation 

System, INS) with reference systems exhibiting long-term stability (like Global Positioning 

System, GPS). For the integration of GPS and INS, because the systems are nonlinear in 

nature we use the EKF where the GPS errors are represented by the measurement noise 

covariance matrix R , and the INS errors are represented by process covariance matrix Q .  

However, a significant difficulty in designing a Kalman Filter (refers to both LKF and EKF) 

can often be traced to incomplete a priori information about R  and Q . In most practical 

applications these matrices are initially estimated or even unknown. Incorrect a priori 

information can lead to practical divergence of the filter, resulting in a difference in the 

theoretical and actual behaviour of the filter.  

The use of  fuzzy-rule based adaptation scheme to cope with divergence problem caused by 

the insufficiently known a priori filter statistics is explored.  Integrated INS/GPS Navigation 

System with  implemented FLAC is used for navigation, guidance and control of Unmanned 

Aerial or Ground Vehicles. The navigation of mobile robots requires fast, accurate, on-line 

control algorithms with reliable navigation parameters.  
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2. NAVIGATION SYSTEMS 

 

2.1. Inertial Navigation System (INS) 

 

The INS algorithm integrates the accelerations and angular rates provided by an Inertial 

Measurement Unit (IMU) to compute the position, velocity, and attitude (PVA) of the vehicle 

(Lin 1991).   

The algorithm takes into account the geoid shape and a gravity model. There are many 

problems with noise and unbounded error that must be handled to get any meaningful result 

out of the INS. The information provided by the IMU such as body accelerations are 

transformed to navigation frame and gravity vector is subtracted. The resulting acceleration 

vector  is integrated with respect to time  and we get the velocity of the vehicle. The velocity 

vector is then integrated and we can read the position of the vehicle. 

  

2.2 Global Positioning System (GPS) 

 

Global Positioning System (GPS) can be regarded as a new navigation sensor. GPS provides 

range and range-rate measurements. The primary role of GPS is to provide highly accurate 

position and velocity worldwide, based on range and range-rate measurements. The 

acceleration vector is then determined from positions at different time epochs, by 

differentiation of these positions with respect to time. Position accuracy of GPS pseudo-range 

absolute positioning is affected by measurement noise (few metres) and signal errors like: 

multipath of  the signal, ionosphere delays, troposphere delays, signal attenuation, ephemeris 

error, satellite clock error and receiver clock error (Ronback, 2002). Also, the GPS signal is 

susceptible to jamming. For many vehicle navigation systems, GPS is insufficient as a stand 

alone position system. 

 

 

3. KALMAN FILTER 

 

The Kalman filter (Gene et al. 2000) assumes that the random process which has to be 

estimated is of the form:  
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where, x  is a state value, u  is a control effort, w  is white noise with known covariance, z  is 

a noisy measurement sample, D  is the direct transmission of the input to the output, H  is the 

ideal (noiseless) connection between the measurement and the state, and ν  is measurement 

error. This process can be modeled discretely in the following form, assuming there are not 

control inputs u  to the system. 
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The system error is defined as: 
−−
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where, −

kx̂  is the best estimate prior to receiving a measurement at time 
Kt .  
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The error  covariance  matrix at this time is: 
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where E  is the  expectation. Now a linear blending of both the estimate and the measured 

values (residuals)  is taken. 
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where Kx̂  is the new updated estimate, z   is measured  values (residuals), and K  is  a 

weighted value that determines the amount of error between the measured value and the best 

estimate. This gain is referred to as the Kalman gain which is capable of changing value over 

time. Now looking at the error covariance of this new updated estimate, we get the  following 

equation: 

                                          ])ˆ)(ˆ[(][ T

KKKK

T

KKK xxxxEeeEP −−==                                       (6) 

 

Now, after some algebra the following expression results for the error covariance matrix: 
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This is a general expression for updating the error covariance matrix, and it applies for any 

value of K .  The resulting gain K is computed by the equation: 
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Looking at equation (8), we see that as the measurement error covariance approaches zero, the 

gain K  weights the residual more heavily. Specifically, 
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On the other hand, as the a priori estimate error covariance approaches zero, the gain K 

weights the residual less heavily. Specifically, 
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4. EXTENDED KALMAN FILTER 

 

As described above, the Kalman filter addresses the general problem of trying to estimate the 

state of a discrete-time controlled process that is governed by a linear stochastic difference 

equation. We know that real processes are highly nonlinear in nature, in other words we 

cannot find a linear system. The question know is, what happens if the process to be estimated 

and (or) the measurement relationship to the process is non-linear? Some of the most 

interesting and successful applications of  Kalman filtering have been such  situations.  

Natural extension of the Linear Kalman filter or Kalman filter that linearizes about the current 

mean and covariance is referred to as an Extended Kalman filter or EKF. Extended Kalman 

filter is based on Taylor series, where in the face of non-linear relationships we linearize the 

estimation around the current estimate using the partial derivatives of the process and 

measurement functions to compute estimates. 
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5. FUZZY LOGIC CONTROL  

 

Fuzzy logic is a fascinating area of research because it does a good job of trading off   

between significance and precision, something that humans have been managing for a very 

long time. Fuzzy logic control is a control method based on fuzzy logic and today is very 

effective and widely used control concept of complex, nonlinear dynamic systems.  

Just as fuzzy logic can be described  as ”computing with words rather than numbers„ ; fuzzy 

logic control can be described simply by ”control with sentences rather than equations„.  

The basic configuration of the fuzzy logic controller is shown in Fig. I. 
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Fig. I. Fuzzy logic Controller Architecture 

 

5.1  Rule Base 

Specifically, the fuzzy rule-base comprises the following fuzzy If-Then rules: 

IF 1x  is lA1  and … and nx  is l

nA , THEN y is lB , 

where l

iA and lB  are fuzzy sets in RU i ⊂  and RV ⊂ , respectively, and 

Uxxxx
T

n ∈= ),,,( 21 K  and Vy ∈  are the input and output (linguistic) variables of the fuzzy 

system, respectively. 

 

5.2  Inference Mechanism 

The premises of all the rules are compared to the controller inputs to determine which rules 

apply to the current situation. The ”matching„ process involves determining the certainty that 

each rule applies. 

 

5.3 Fuzzification 

The fuzzification process is the act of obtaining a value of an input variable and finding the 

numeric values of the membership function(s) that are defined for that variable. 

 

5.4 Defuzzification 

Defuzzification operates on the implied fuzzy sets produced by the inference mechanism and 

combines their effects to provide the ”most certain„ controller output. 

Perhaps the most popular method is the center of Gravity (COG) method also known as 

centroid calculation, which returns the center of area under the curve. There are other  

methods like:  bisector, middle of maximum (the average of the maximum value of the output 

set), largest of maximum, and smallest of maximum. 

Center of Gravity method: 
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where ib , is the center of  the membership function of the consequent of  rule )(i , ∫ )(iµ  is 

area  under membership function )(iµ . 
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6. FUZZY LOGIC ADAPTIVE CONTROLLER 

 

A lot of a priori information’s such as QRPx ,,,ˆ
00  are essential for designing the Kalman 

filter. In most cases,  these matrices are initially estimated or even unknown. The problem 

here is that the optimality of the estimation algorithm is closely connected to the quality of a 

priori information’s.  It has been shown that insufficiently known a priori filter statistics can 

reduce the precision of the estimated filter states. In addition, incorrect a priori information 

can lead to practical divergence of the filter, resulting in a difference in the theoretical and 

actual behaviour of the filter.  There are two kinds of divergence: apparent divergence and 

true divergence (Sasiadek, 2002). In the apparent divergence, the actual estimate error 

covariance remains bounded, but it approaches a larger bound than does predicted error 

covariance. In true divergence, the actual estimation covariance eventually becomes infinite. 

The divergence due to modeling errors is critical in Kalman filter application. If, the Kalman 

filter is fed information that the process behaved one way, whereas, in fact, it behaves another 

way, the filter will try to continually fit a wrong process. When the measurement situation 

does not provide enough information to estimate all the state variables of the system, in other 

words, the computed estimation error matrix becomes unrealistically small, and the filter 

disregards the measurement, then the problem is particularly severe. Thus, in order to solve 

the divergence due to modeling errors, we can estimate unmodeled states, but it adds 

complexity to the filter and one can never be sure that all of the suspected unstable states are 

indeed model states (Sasiadek, 2002). Another possibility is to add process noise. It makes 

sure that the Kalman filter is driven by white noise, and prevents the filter from disregarding 

new measurement.  If the Kalman filter is based on a complete and perfectly tuned model, the 

residuals or innovations should be a zero-mean white noise process. If the residuals are not 

white noise, there is something wrong with the design and the filter is not performing 

optimally. We assume that uncertainties α , or time varying parameters exist in matrix R .  

The Fuzzy Logic Adaptive Controller (FLAC) is used to detect these uncertainties, adapt the 

EKF with that the whole Integrated INS/GPS Navigation System on-line and prevent 

divergence. In the  FLAC  variance and the mean of residuals are used as inputs for the fuzzy 

inference engine while the uncertainties in measurement noise covariance matrix are used as 

output. Variance is a very useful statistical property for random signals because if we knew 

the variance of a signal that was otherwise supposed to be “constant” around some value the 

mean, the magnitude of the variance would give us a sense how much noise or uncertainty  is 

in the signal. Generally, when we have great uncertainties  the variance is becoming large, 

and mean  value is moving away from zero, the EKF is becoming unstable and divergence 

problems occurs. By detecting an appropriate value of the uncertainties FLAC continually 

adjusts the noise strengths in the filter’s internal model and adapt the EKF optimally trying to 

keep the innovation sequence acting as zero-mean white noise. 

 

7. SIMULATION EXPERIMENTS AND RESULTS 

 

In order to see the  FLAC in act we compare the behaviour of the error covariance ZP  in two 

cases. In the first case  matrix R  is constant and we don’t use the adoption scheme.  In the 

second case,  we use the FLAC  to detect the uncertainties α , and to adapt the error 

covariance ZP . The designed standard deviation of GPS measurement R  is 5 meters. The 

designed standard deviation of  Q  for INS is 0.0012 meters. When we carried out the 

simulation experiments we change the value of the measurement noise covariance. So we 

have “true” measurement noise covariance TR , that is not equal to the designed covariance  in 

the EKF. And we have RRRRT 6,4,3=  in other words the “true” measurement noise 

covariance is three, four, six times greater then the designed covariance. 
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                     a)                                                b)                                                c) 

Fig II. Detection of the uncertainty when RRT 2=  

 

Figure II shows the  FLAC in act. From the case a) we can see the detected uncertainty 2=α  

and the difference between the adapted, case b) and not adapted error covariance ZP ,  case c). 
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                     a)                                                b)                                                c) 

Fig III. Detection of the uncertainty when RRT 6=  

 

Figure III shows the  FLAC in act. From the case a) we can see the detected uncertainty 

6=α  and the difference between the adapted, case b) and not adapted error covariance ZP ,  

case c). From figure III we can also see that redesigned or adapted  error covariance ZP  is 

three times greater than the designed or not adapted  error covariance.  
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